CHANGE 1

DEPARTMENT OF THE ARMY TECHNICAL BULLETIN

CALIBRATION PROCEDURE FOR ATTENUATORS, FIXED AND VARIABLE (10 MHZ TO 40 GHZ)

(GENERAL)

Headquarters, Department of the Army, Washington, DC 18 March 2002

Approved for public release; distribution is unlimited.

TB 9-4931-523-35, 10 July 2000, is changed as follows:

1. Remove old pages and insert new pages as indicated below. New or changed material is indicated by a vertical bar in the margin of the page.

Remove Pages

Insert Pages 1 and 2

1 and 2 A-5 and A-6 A-9 and A-10

A-5 and A-6 A-9 and A-10

2. File this change sheet in front of the publication for reference purposes.

By Order of the Secretary of the Army:

ERIC K. SHINSEKI General, United States Army Chief of Staff

OFFICIAL:

Jul B. Hula

JOEL B. HUDSON Administrative Assistant to the Secretary of the Army 0202811

Distribution:

To be distributed in accordance with IDN 342070, requirements for calibration procedure TB 9-4931-523-35.

CALIBRATION PROCEDURE FOR ATTENUATORS, FIXED AND VARIABLE (10 MHZ TO 40 GHZ) (GENERAL)

Headquarters, Department of the Army, Washington, DC 10 July 2000

Approved for public release; distribution is unlimited

REPORTING OF ERRORS AND RECOMMENDING IMPROVEMENTS

You can help improve this publication. If you find any mistakes or if you know of a way to improve the procedure, please let us know. Mail your letter or DA Form 2028 to: Commander, U. S. Army Aviation and Missile Command, ATTN: AMSAM-MMC-LS-LP, Redstone Arsenal, AL 35898-5230. A reply will be furnished to you. You may also send in your comments electronically to our e-mail address: 2028@redstone.army.mil or by FAX (256) 842-6546/DSN 788-6546.

			Paragraph	Page
SECTION	I.	IDENTIFICATION AND DESCRIPTION		_
		Test instrument identification	1	2
		Forms, records, and reports	2	2
		Calibration description	3	2
	II.	EQUIPMENT REQUIREMENTS		
		Equipment required	4	2
		Accessories required	5	3
	III.	CALIBRATION PROCESS		
		Preliminary instructions	6	4
		Equipment setup	7	5
		Fixed attenuation measurement		
		(10 MHz to 18 GHz)	8	8
		Variable attenuation measurement		
		(10 MHz to 18 GHz)	9	9
		Fixed attenuation measurement		
		(18 to 26.5 GHz)	10	10
		Variable attenuation measurement		
		(18 to 26.5 GHz)	11	11

*This bulletin supersedes TB 9-4931-523-35, dated 18 December 1991.

			Paragraph	Page
		Fixed attenuation measurement		
		(26.5 to 40 GHz)	12	13
		Variable attenuation measurement		
		(26.5 to 40 GHz)	13	14
		Final procedure	14	15
Appendix	Α	Test instrument identification		A-1
Appendix	В	Alternate fixed attenuation measurements		
		(10 MHz to 18 GHz)		B-1
Appendix	С	Alternate variable attenuation measurement (10		
		MHz to 18 GHz)		C-1

SECTION I IDENTIFICATION AND DESCRIPTION

1. Test Instrument Identification. This procedure provides instructions for the calibration of Attenuators, Fixed and Variable (10 MHz to 40 GHz) (General). The manufacturers' manuals were used as the prime data sources in compiling these instructions. The equipment being calibrated will be referred to as the TI (test instrument) throughout this bulletin.

a. Model Variations. Variations among models are described in appendix A.

b. Time and Technique. The time required for this calibration is approximately 2 hours for fixed and variable attenuators from 10 MHz to 18 GHz, and 5 hours for fixed and variable attenuators from 18 to 40 GHz.

2. Forms, Records, and Reports. Forms, records, and reports required for calibration personnel at all levels are prescribed by TB 750-25

3. Calibration Description. TI parameters and performance specifications which pertain to this calibration are listed in appendix A. TIs other than those listed in the appendix may be checked using the techniques in this TB if the manufacturers' specifications are available.

SECTION II EQUIPMENT REQUIREMENTS

4. Equipment Required. Table 1 identifies the specific equipment to be used in this calibration procedure. This equipment is issued with Secondary Transfer Calibration Standards Set AN/GSM-287 and Secondary Reference Calibration Standards Set NSN 4931-00-621-7878. Alternate items may be used by the calibrating activity. The items selected must be verified to perform satisfactorily prior to use and must bear evidence of current calibration. The equipment must meet or exceed the minimum use specifications listed in table 1. The accuracies listed in table 1 provide a four-to-one ratio between the standard and TI. Appendix A is footnoted where the four-to-one ratio may not be met.

2 CHANGE 1

5. Accessories Required. The accessories required for this calibration are common usage accessories issued as indicated in paragraph **4** above, and are not listed in this calibration procedure. The following peculiar accessories are also required for this calibration: Transformers Anzac Electronics, Models TP75 (7913106-2) and TP93 (7913106-2) and an 18-to-40 GHz kit.

			Manufacturer and model
	Common name	Minimum use specifications	(part number)
	ATTENUATOR, (FIXED)	Range: 10 dB	Weinschel, Model 9918,
		Frequency range: 10 MHz to 18 GHz	9918-10dB, 9918-20dB,
		Accuracy: ±0.5 dB	9918-30dB, and 9918-
			60dB (9918)
		Range: 20 dB	
		Frequency range: 10 MHz to 18 GHz	
		Accuracy: $\pm 0.5 \text{ dB}$	
		Range: 30 dB	
		Frequency range: 0.7 and I GHz	
		Accuracy: ±1.0 dB	
		Pange: 60 dB	
		Frequency range: 10 MHz to 18 CHz	
		Accuracy: +1 5dB	
	FREQUENCY EXTENSION	Frequency range: 18.0 to 26.5 GHz	Weinschel Model 1611
	KIT NO. 1 1,2	IF frequency: 700 MHz	(1611)
		Combined accuracy	()
		w/receiver system: ±0.03 dB/10 dB	
	FREQUENCY EXTENSION	Frequency range: 26.5 to 40 GHz	Weinschel, Model 1612
	KIT NO. 2 ^{2,3}	IF frequency: 1 GHz	(1612)
		Combined accuracy	
		w/receiver system: ±0.03 dB/10 dB	
	MEASURING RECEIVER	Frequency range: 10 MHz to 18 GHz	Hewlett-Packard Model
		Attenuation range: 0.0 to 100 dB	8902A (13533996) with
		Accuracy: ±0.02 dB/10 dB	converter Hewlett-
			Packard Model 11793A,
			power sensor Hewlett-
			Packard Model 11722A,
			and power sensor
			Hewlett Packard Model
			11792A
	POWER METER	Frequency range: 10 MHz to 18 GHz	Hewlett-Packard, Model
		Power range: 0 to -70 dBm	437B (13440045) with
		Accuracy: $\pm dB/10 dB$	power sensor, Hewlett-
ļ			Packard, Model 8482A
			(13440043), and power
ļ			sensor, Hewlett-Packard,
ļ			
ļ			With 50 up attenuator,
ļ			Hewlett-Packard, Model
			11/UOA))

Table 1. Minimum	Specifications of I	Equipment Required
------------------	---------------------	--------------------

		Manufacturer and model
Common name	Minimum use specifications	(part number)
POWER SPLITTER	Frequency range: 10 MHz to 18 GHz	Weinschel, Model 1870A
	Insertion loss: 6 dB -0.2 + 1.5 dB	(7916839)
	Output tracking between ports:	
	10 MHz to 2 GHz: ±0.15 dB	
	2 to 8 GHz: ±0.2 dB	
	8 to 18 GHz: ±0.25 dB	
PROGRAMMABLE SWEEP	Frequency range: 13 to 26.5 GHz	Wiltron, Model 6669M
GENERATOR	Power output: 0 to +3 dBm	(6669M)
	Power accuracy: 13 to 20 GHz: ±1.1 dB	
	20 to 26.5 GHz: ±1.4 dB	
RECEIVER SYSTEM	Frequency range: 10 MHz to 18 GHz	Weinschel, Model V M4A
	Attenuation range: 0.0 to 100 dB	(VM4A)
	Accuracy: ±0.02 dB/10 dB	
SIGNAL GENERATOR NO. 1	Frequency range: 10 MHz to 2 GHz	(SG-1207/U)
	Power output: 0 dBm	
	Accuracy: 10 to 500 MHz: ±1.5 dB	
	500 to 1 000 MHz: +9.0 dB	
	1000 to 2000 MHz: ±2.5 dB	
SIGNAL GENERATOR NO. 2	Frequency range: 2 to 18 GHz	(SG-1219/U)
	Power output: 0 to +8 dBm	
	Accuracy: ±2 dB	
SIGNAL GENERATOR NO. 3	Frequency range: 2 to 18 GHz	(SG-1219/U)
	Power output: 0 to +8 dBm	
	Accuracy: ±2 dB	

Table 1. Minimum Specifications of Equipment Required - Continued

 $^1\!Part$ of microwave standards kit, 18 to 26.5 GHz (secondary reference).

²Accessories included.

³Part of microwave standards kit, 26.5 to 40 GHz, limited deployed (secondary reference).

SECTION III CALIBRATION PROCESS

6. Preliminary instructions

a. The instructions outlined in paragraphs **6** and **7** are preparatory to the calibration process. Personnel should become familiar with the entire bulletin before beginning the calibration.

b. Items of equipment used in this procedure are referenced within the text by common name as listed in table 1.

c. This calibration bulletin contains information and techniques for the calibration of attenuators from 10 MHz to 40 GHz.

d. Attenuators with specifications below 10 MHz should use the techniques presented in TB 9-6625-2181-35.

7. Equipment Setup

a. Refer to TI as listed in appendix and evaluate TI for connector type, impedance, and frequency range. Determine and record at least 10 equally spaced frequency test points.

NOTE

The calibration frequencies attached to TI or test report furnished with TI may be used if desired.

b. Refer to TI type and frequency range for equipment setup figure and performance paragraph as listed in (1) through (6) below:

(1) Fixed attenuator with frequency range between 10 MHz and 18 GHz refer to ${\bf c}$ below.

(2) Variable attenuator with frequency range between 10 MHz and 18 GHz, refer to ${\bf d}$ below.

(3) Fixed attenuator with frequency range between 18 and 26.5 GHz, refer to ${\bf e}$ below.

(4) Variable attenuator with frequency range between 18 and 26.5 GHz, refer to ${\bf f}$ below.

(5) Fixed attenuator with frequency range between 26.5 and 40 GHz, refer to ${\bf g}$ below.

(6) Variable attenuator with frequency range between 26.5 and 40 GHz, refer to ${\bf h}$ below.

NOTE

For maximum accuracy, the RF input level to channel I should be approximately -60 dBm, and the RF input level to channel II should be approximately -30 dBm or less.

NOTE

The insertion loss measurements for attenuators listed in the appendix are considered adequate for determining their accuracy and serviceability. VSWR checks are not required.

NOTE

Unless otherwise specified, verify the results of each test and, whenever the test requirement is not met, take corrective action before continuing with the calibration.

NOTE

When calibrating waveguide attenuators, use four clamps or screws for each connection to reduce losses.

c. Connect equipment as shown in figure 1 and allow equipment to warm up for 1 hour before performing paragraph **8** below (appendix B can be used as an alternate to paragraph **8** below.).

d. Connect equipment as shown in figure 1 and allow equipment to warm up 1 hour before performing paragraph **9** below (appendix C can be used as an alternate to paragraph **9** below.).

e. Connect equipment as shown in figure 2 and allow equipment to warm-up for 3 hours before performing paragraph **10** below.

f. Connect equipment as shown in figure 2 and allow equipment to warm-up for 3 hours performing paragraph **11** below.

g. Connect equipment as shown in figure 3 and allow equipment to warm-up for 3 hours before performing paragraph **12** below.

h. Connect equipment as shown in figure 3 and allow equipment to warm-up for 3 hours before performing paragraph **13** below.

¹Use signal generator No. 1 for frequencies from 10 MHz to 2 GHz and signal generator No. 2 for frequencies between 2 and 18 GHz. ²Use adapters as useded.

Remove 10 dB attenuator (fixed) from equipment setup when making measurements below -70 dB.

Figure 1. Attenuation measurement (10 MHz to 18 GHz) - equipment setup.

Figure 2. Attenuation measurement (18 to 26.5 GHz) - equipment setup.

Figure 3. Attenuation measurement (26.5 to 40 GHz) - equipment setup. **8. Fixed Attenuation Measurement (10 MHz to 18 GHz)**

a. Performance Check

NOTE

When performing the following steps, if TI frequency range extends above and below 2 GHz, it will be necessary to perform two separate tests - one below and one above 2 GHz.

(1) Adjust signal generator No. 1 (No. 2) frequency controls to test frequency recorded in 7a above and adjust signal generator No. 1 (No. 2) RF output controls for +6 dBm.

(2) Connect POINT A to POINT B (fig. 1).

NOTE

Use adapters as needed.

NOTE

Use waveguide-to-coaxial adapters when TI is waveguide.

NOTE

Use 50 Ω -to-75 Ω or 50 Ω -to-93 Ω adapters when TI is 75 Ω or 93 Ω .

(3) Establish a reference on the receiver system at test frequency recorded in **7a** above.

(4) Connect TI between POINTS A and B (fig. 1).

NOTE

Ensure receiver system is in measurement mode.

(5) Measure and record receiver system indication. Measured attenuation will be within range and accuracies specified in appendix A for TI being calibrated.

(6) Disconnect TI from equipment setup and repeat (1) through (5) above for remaining test frequencies recorded in **7a** above.

b. Adjustments. No adjustments can be made; however, a correction chart may be prepared listing actual receiver system indications at frequencies of interest.

9. Variable Attenuation Measurement (10 MHz to 18 GHz)

a. Performance Check

NOTE

When performing the following steps, if TI frequency range extends above and below 2 GHz, it will be necessary to perform two separate tests - one below and one above 2 GHz.

NOTE

When calibrating step attenuators, check each step, record value, and add values. Sum should equal total value of attenuator plus or minus accuracies.

(1) Adjust signal generator No. 1 (No. 2) frequency controls to test frequency recorded in **7a** above and adjust signal generator No. 1 (No. 2) RF output controls for +6 dBm.

(2) Connect POINT A to POINT B (fig. 1).

NOTE

Use adapters as needed.

NOTE

Use waveguide to coaxial adapters when TI is waveguide.

NOTE

Use 50Ω-to-75Ω or 50Ω-to-93Ω adapters when TI is 75Ω or 93Ω.

(3) Establish a reference on the receiver system at test frequency recorded in 7a above.

(4) Set TI for 0 dB or minimum attenuation and insert TI between POINTS A and B (fig. 1).

NOTE

Ensure receiver system is in measurement mode.

(5) Measure and record receiver system indication as insertion loss. This value will be within the tolerances listed in appendix A.

(6) Establish a new reference on receiver system.

(7) Increase TI attenuation setting in one step increments (or one cardinal point as desired).

(8) Measure and record attenuation change. Measured attenuation will be within range and accuracies specified in appendix A for TI being calibrated.

(9) Repeat (7) and (8) above for each setting on TI dial or other desired settings.

(10) Disconnect TI from equipment setup and repeat (1) through (9) above for remaining frequencies listed in 7a above.

NOTE

Remove 10 dB attenuator (fixed) from figure 1 equipment setup and establish a new reference on receiver system when making measurements below -70 dB.

b. Adjustments. No adjustments can be made; however, a correction chart may be prepared listing actual receiver system indications at frequencies of interest.

10. Fixed Attenuation Measurement (18 to 26.5 GHz)

a. Performance Check

(1) Adjust programmable sweep generator frequency controls to value (RF) recorded in 7a above and RF LEVEL output control for +3 dBm.

(2) Determine the signal generator No. 2 frequency (LO) required for the desired measurement by calculating the following equation:

LO = (RF - IF)/2

Where:

RF = frequency of programmable sweep generator (1) above

IF = intermediate frequency at which receiver system is to perform measurement (0.700 GHz).

EXAMPLE

Let IF =	0.700				
Let RF =	18 GHz (1) above				
Let LO =	signal generator No. 2 frequenc				
LO LO LO LO	= = =	(RF -IF)/2 (18 GHz -0.700 GHz)/2 17.3 GHz/2 8.65 GHz			

Signal generator No. 2 frequency for this measurement would be set to 8.65 GHz.

(3) Adjust signal generator No. 2 frequency controls to value determined in (2) above and RF output controls to +8 dBm.

(4) Connect POINT A to POINT B (fig. 2).

NOTE

Use adapters as needed.

NOTE

Use waveguide-to-coaxial adapters when TI is coaxial.

(5) Establish a reference on receiver system at 0.700 GHz.

(6) Insert TI between POINTS A and B (fig. 2).

NOTE

Ensure receiver system is in measurement mode.

(7) Measure and record receiver system indication. Measured attenuation will be within the range and accuracies listed in appendix for TI being calibrated.

(8) Repeat (1) through (7) above for remaining test frequencies recorded in 7a above.

b. Adjustments. No adjustments can be made; however, a corrective chart may be prepared showing actual attenuation value at frequencies of interest.

11. Variable Attenuation Measurement (18 to 26.5 GHz)

a. Performance Check

(1) Adjust programmable sweep generator frequency controls to value (RF) recorded in **7a** above and **RF LEVEL** output control for +3 dBm.

(2) Determine signal generator No. 2 frequency (LO) required for the desired measurement by calculating the following equation:

LO = (RF - IF)/2

Where:

RF = Frequency of programmable sweep generator (1) above,

IF = Intermediate frequency at which receiver system is to perform measurement (0.700 GHz)

EXAMPLE:

Let IF =	0.700 GHz							
Let RF =	18 GHz	18 GHz (1) above						
Let LO =	signal generator No. 2 frequency							
LO	=	(RF -IF)/2						
LO	=	(1 8 GHz-0.700 GHz)/2						
LO	=	17.3 GHz/2						
LO	=	8.65 GHz						

Signal generator No. 2 frequency for this measurement would be set to 8.65 GHz.

(3) Adjust signal generator No. 2 frequency controls to value determined in (2) above and RF output to controls +8 dBm.

(4) Connect POINT A to POINT B (fig. 2).

NOTE

Use adapters as needed.

NOTE

Use waveguide to coaxial adapters when TI is coaxial.

(5) Establish a reference on receiver system at 0.700 GHz.

(6) Set TI for 0 dB or minimum attenuation and insert TI between POINTS A and B (fig. 2).

NOTE

Ensure TI is in measurement mode.

(7) Measure and record receiver system indication as insertion loss. This value will be within the tolerances listed in appendix A.

(8) Establish a new reference on receiver system.

(9) Increase TI attenuation setting in one-step increments (or one cardinal point as desired).

(10) Measure and record receiver system indication. Measured attenuation will be within the range and accuracies listed in appendix A for TI being calibrated.

(11) Repeat (9) and (10) above for each setting on TI dial or other desired setting.

(12) Disconnect TI from equipment setup and repeat (1) through (11) above for remaining test frequencies of interest.

b. Adjustments. No adjustments can be made; however, a corrective chart may be prepared showing actual attenuation value at frequencies recorded in **7a** above.

12. Fixed Attenuation Measurement (26.5 to 40 GHz)

a. Performance Check

(1) Determine and record the signal generator No. 2 frequency (RF) required for the desired measurement by calculating the following equation:

```
\begin{array}{ll} RF = Test \ frequency \ in \ GHz \ (\textbf{7a} \ above) \ / \ 3 \\ EXAMPLE \ A \\ If \ first \ test \ frequency \ recorded \ in \ \textbf{7a} \ above \ is \ 27 \ GHz: \\ RF &= 27/3 \\ RF &= 9 \ or \ 9 \ GHz \end{array}
```

(2) Determine and record programmable sweep generator frequency (LO) required for the desired measurement by calculating the following equation:

LO = (3 X RF)) -IF)/ 2	
EXAMPLE B		
Where:		
RF	=	signal generator No. 2 frequency in GHz recorded in (1) above
IF	=	1 (operating frequency of receiver system in GHz)
LO	=	programmable sweep generator
		frequency
Where:		
LO	=	((3X9)-l)/2
LO	=	(27 - 1) / 2
LO	=	26/2
LO	=	13 or 13 GHz

(3) Adjust signal generator No. 2 frequency controls to value determined in (1) above and RF output controls to +3 dBm.

(4) Adjust programmable sweep generator frequency controls to value determined in (2) above and RF LEVEL output controls to 0 dBm.

(5) Connect POINT A to POINT B (fig. 3)

NOTE

Use adapters as needed.

(6) Establish a reference on receiver system at 1 GHz.

(7) Insert TI between POINTS A and B (fig. 3).

NOTE

Ensure receiver system is in measurement mode.

(8) Measure and record receiver indication. Measured attenuation will be within range and accuracies specified in appendix A for TI being calibrated.

(9) Disconnect TI from equipment setup.

(10) Repeat (1) through (9) above for remaining frequencies recorded in **7a** above.

b. Adjustments. No adjustments can be made; however, a correction chart may be prepared listing actual receiver system indications at frequencies of interest.

13. Variable Attenuation Measurement (26.5 to 40 GHz)

a. Performance Check

(1) Determine and record the signal generator No. 2 frequency (RF) required for the desired measurement by calculating the following equation:

RF = Test frequency in GHz (7a above)/3

```
EXAMPLE A If first test frequency recorded in 7a above is 27 GHz: RF = 27/3 RF = 9 or 9 GHz
```

(2) Determine and record programmable sweep generator frequency (LO) required for the desired measurement by calculating the following equation:

LO - ((3 X RF) -IF) / 2

EXAMPLE B

Where:		
RF	=	signal generator No. 2 frequency in GHz recorded in (1) above.
IF	=	1 (operating frequency of receiver system in GHz)
LO	=	programmable sweep generator frequency
LO	=	((3 X 9) -1) /2
LO	=	(27 - 1) / 2
LO	=	26 /2
LO	=	13 or 13 GHz

(3) Adjust signal generator No. 2 frequency controls to value determined in (1) above and RF output controls to +3 dBm.

(4) Adjust programmable sweep generator frequency controls to value determined in (2) above and **RF LEVEL** output controls to 0 dBm.

(5) Connect POINT A to POINT B (fig. 3)

NOTE

Use adapters as needed.

(6) Establish a reference on receiver system at 1 GHz.

(7) Set TI for 0 dB or minimum attenuation and insert TI between POINTS A and B (fig. 3).

NOTE

Ensure receiver system is in measurement mode.

(8) Measure and record receiver system indication as insertion loss. This value will be within the tolerance listed in appendix A.

(9) Establish a new reference on receiver system.

(10) Increase TI attenuation setting in one-step increments (or one cardinal point as desired).

(11) Measure and record attenuation change. Measured attenuation will be within range and accuracies specified in appendix A for TI being calibrated.

(12) Repeat (10) and (11) above for each setting on TI dial or other desired settings.

(13) Disconnect TI from equipment setup and repeat (1) through (12) above for remaining frequencies recorded in 7a above.

b. Adjustments. No adjustments can be made; however, a correction chart may be prepared listing actual receiver system indications at frequencies of interest.

14. Final Procedure

a. Deenergize and disconnect all equipment.

b. Annotate and affix DA label/form in accordance with TB 750-25.

APPENDIX A

TEST INSTRUMENT IDENTIFICATION

		Nominal							Insertion	
		at	attenuation		Frequency range			ange	Accuracy	loss at 0
Model number	Manufacturer		(dB)		(Gl	Hz)1		(dB)	dB (dB)
A2648B ²	RLC Electronics	0	to	120 ³	DC	to	1			<u><</u> 0.25
(MIS-10263)					DC	to	0.1			<u><</u> 0.75
					0.1	to	0.5			<u><</u> 1.5
					0.5		to	1		
		0	to	60	DC	to	0.0	1	$\pm 0.15^{4}$	
		60	to	1203					±0.30	
		0	to	60	0.01	to	0.1		$\pm 0.35^{5}$	
		60	0	to					$\pm 0.70^{5}$	
				120 ³						
		0	to	120 ³	0.1	to	1		± 3.0	
AB20B	Microlab/FXR		20		DC	to	4.5			
					DC	to	3		±0.7	
					3	to	4.5		±1.0	
AC20N	Microlab/FXR		20		4.5	to	10		±1.0	
AD06N	Microlab/FXR		6		DC	to	4		± 0.6	
AD10N	Microlab/FXR		10		DC	to	4		± 0.8	
AD30N	Microlab/FXR		30		DC	to	4		±1.0	
AF117A69-34 ²	Weinschel	0	to	69	DC	to	18			<u><1.2</u>
		1	to	9	DC	to	18		± 0.5	
		10	to	19	DC	to	18		±1.0	
		20	to	29	DC	to	18		±1.2	
		30	to	39	DC	to	18		± 1.4	
		40	to	49	DC	to	18		±1.5	
		50	to	59	DC		to	18	±1.7	
		60	to	69	DC		to	18	±1.8	
AS1	Weinschel	See We	einsch	nel 50-3,	50-6, 5	0-10,	50-2	20, and 2	210-3, 210-6, 210-10, 21	0-20
AS4	Weinschel	See We	einsch	nel 50-3,	50-6, 5	0-10,	50-2	20, and 5	530A-3, 530A-6, 530A-1	0, 530A-20
AS5A	Weinschel									
AS6A	Weinschel	See We	einsch	nel 2-3 d	B, 2-6 d	B, 2-	10 d	B, 2-20 d	lΒ	
AS9146	Weinschel	See We	einsch	nel 50-1,	50-2, 5	0-3, 5	50-6,	50-20		
AT201SR	RLC	0	to	120 ³	DC		to	1	2% or ±0.5 dB	
	Electronics				DC		to	0.25	whichever is greater	

APPENDIX A

		Nominal					Insertion
		Attenuation	Frequency range		/ range	Accuracy	at 0 dB
Model number	Manufacturer	(dB)	(GHz)1		:)1	(dB)	(dB)
AV-50-2	Jerrold	0 to 82	Dc	to	0.5		
		(each pad)	At		DC		
		Two or more	Δ+		DC	+2% of pad value	
		pads	At		DC	$\pm 0.1 \text{ dB}$	
		I · · · ·					
						±2% of value	
			At		0.6	+0.1 dB	
						+4% of value	<0.3
			At		0.23	+0.1 dB	_0.0
			A.+		0.5	$\pm 12\%$ of value	<0.0
CN1096G	See Kay Flemet	trics 31-0	At		0.5	+0.1 dB	≤0.0
CN533U	PRD	$\begin{array}{c} 111111111111111111111111111111111111$	7.0	to	10.0	± 0.5	≤0.5
	Electronics	0 10 10					
CN713U		0 to 20	8.2	to	12.4		
		0 to 10				±1.0	
		10 to 20				± 2.0	
CN797U			Da				
CN895	Howlett	20 See Hewlett Deek	DC	t0	1	±0.5	
CIN9080	Packard	See newlett-Pack	aru Ga	302A			
CN970U	1 donar d						
FP-50-1	Texscan	1	DC	to	2.0	±0.3	
			DC	to	0.5	±0.5	
			0.5	to	1.0	± 1.0	
FP-50-2	Tayscan	2	1.0 DC	to	2.0	+0.3	
11-30-2	Texscall	~	DC	to	2.0 0.5	±0.5	
			0.5	to	1.0	±1.0	
			1.0	to	2.0		
FP-50-3	Texscan	3	DC	to	2.0	±0.3	
			DC	to	0.5	±0.5	
			0.5	to	1.0	±1.0	
FP-50-6	Texscan	6	DC	to	2.0	±0.3	
		_	DC	to	0.5	±0.5	
			0.5	to	1.0	±1.0	
		4.2	1.0	to	2.0		
FP-50-10	Texscan	10		to	2.0	±0.3	
			0.5	to	0.3 1.0	±0.3 +1.0	
			1.0	to	2.0	-1.0	

TEST INSTRUMENT IDENTIFICATION

APPENDIX A

		Nominal			Insertion
		attenuation	Frequency range	Accuracy	loss at 0 dB
Model number	Manufacturer	(dB)	(GHz) ¹	(dB	(dB)
FP-50-20	Texscan	20	DC to 2.0	±0.3	
			DC to 0.5	±0.5	
			0.5 to 1.0	±1.0	
			1.0 to 2.0		
FP-50-30	Texscan	30	DC to 0.5	±3%	
FP-50-40	Texscan	40	DC to 0.5	$\pm 3\%$	
FP-50-50	Texscan	50	DC to 0.5	$\pm 3\%$	
FP-50-60	Texscan	60	DC to 0.5	$\pm 3\%$	
G382A	Hewlett-	0 to 50	3.95 to 5.85	±2% of setting or	
	Packard			±0.1 dB	
				whichever is	
				greater	
GGLFHN100	PRD	20	6	±1.0	
	Electronics				
H101	PRD	0 to 60	7.05 to 10		<u><</u> 0.5
	Electronics				
		0 to 50		±0 1 dB or ±2%	
				whichever is	
				greater	
		50 to 60		±3%	
H101SH	PRD Electronics	See Hl0l			
H175Al0DB	Microlab/FXR	10	3.95 to 5.85	±0.3	
H175A20DB	Microlab/FXR	20	3.95 to 5.85	± 0.5	
H382A	Hewlett-	0 to 50	7.05 to 10.0	$\pm 2\%$ of setting or.	<u><</u> 1.0
	Packard			±0.1 dB	
				whichever is	
				greater	
K175AFl0DB	Microlab/FXR	10	18 to 26.5	±0.3	
K375A	Hewlett-	0 to 20	18 to 26.5		
	Packard				
		0 to 10		±1.0	
		10 to 20		±2.0	
K382A	Hewlett-	0 to 50	18 to 26.5	+2% of setting or	<u><</u> 1
	Packard			±0.1 dB	
				whichever is	
				greater	
M1042	Mitec Corp	30	12.4 to 18	± 0.25	
MDC5078S10		10	DC to 18	± 0.6	
MDCC88014-10	Microwave	10	DC to 12.4	±0.2	
	Distribution		DC to 6	± 0.4	
	Company		6 to 12.4		
MIS-10263	See RLC Electron	ics A2648B			

TEST INSTRUMENT IDENTIFICATION

APPENDIX A

APPENDIX A

	Manufacturer	Nominal	Frequency range	Accuracy	Insertion
Model number		attenuation	(GHz) ¹	(dB)	loss at 0 dB
		(dB0			(dB)
MIS-38936	Flatness	0 to 120 ³	DC to 1		<u><</u> 3.0
		0 to 120	DC to 0.01	±0.3	
		0 to 60	0.01 to 0.1	$\pm 0.35^{5}$	
		60 to 120		$\pm 0.7^{5}$	
		0 to 120	0.1 to 1	±3.0	
		0 to 60	DC to 0.01 0.01	± 0.05	
			to 0.1 0.1	±0.1	
				±0.75	
			to 1		
N9412-10	Arra Inc	10	DC to 18		
			DC to 12	±1.0	
			12 to 18	±2.0	
N9412-20	Arra Inc	20	DC to 18		
			DC to 12	±1.5	
D000A	IIltt	0 +- 50	12 to 18	± 2.0	.1.0
P382A	Hewlett-	0 10 50	12.4 10 18	$\pm 2\%$ of setting	<1.0
	r alkai u			whichever is	
				greater	
R382A	Hewlett-	0 to 50	26.5 to 40	+2% of setting	<1.0
	Packard	0 10 00		or ± 0.1 dB	
				whichever is	
				greater	
TAD50A	Telonic	0 to 110 ³	DC to 0.9		
		0 to 10	0.03	±0.15	<u><</u> 0.1
			0.4	±0.3	<u><</u> 0.5
			0.9	± 0.5	<u><</u> 0.7
		11 to 110	0.03	$\pm 3\% + 0.15$ dB.	
			0.4	$\pm 5\% + 0.3 \text{ dB}$	
			0.9	$\pm 8\% + 0.5 \text{ dB}$	
TG950A	Telonic	0 to 102^3	DC to 0.3		<u><</u> 0.8
					dB/100
				10/ am 0.05 dD	MHZ
			DC 10 0.05	$\pm 1\%$ or 0.05 ub	
				greater	
			0.05 to 0.2	$\pm 1\%$ or 0.2 dB	
			0.00 10 0.2	whichever is	
				greater	
			0.2 to 0.3	±0.5/step	
U175AFl0DB	Microlab/FXR	10	26.5 to 40	±0.3	
U175AF20DB	Microlab/FXR	20	26.5 to 40	±0.5	
V727	Narda	0 to 20	26.5 to 40		<u><</u> 0.5
		0 to 10		±1.0	
		10 to 20		±1.5	

APPENDIX A

		Nominal		Accuracy	Insertion
		attenuation	Frequency range	(dB)	loss at 0 dB
Model number	Manufacturer	(dB)	(GHz) ¹		(dB)
WC-20-20		20	DC to 12.4	$\pm 5\%$	
(7913121-3)					
W175A20DB	Microlab/FXR	20	7.05 to 10	± 0.5	
X175A10DB	Microlab/FXR	10	8.2 to 12.4	±0.3	
Xl75A20DB	Microlab/FXR	20	8.2 to 12.4	±0.5	
X370B	Hewlett-	6	8.2 to 12.4	±20%	
	Packard				
X370C	Hewlett-	10	8.2 to 12.4	±20%	
	Packard				
X382A	Hewlett-	10 to 50	8.2 to 12.4	±12.4% of	<u><</u> 1.0
(7909033)	Packard			setting or ± 0.1	
				dB whichever	
				is greater	
Y175A10DB	Microlab/FXR	10	12.4 to 18	±0.3	
Y175A20DB	Microlab/FXR	20	12.4 to 18	± 0.5	
0880-3100	General Radio	6	DC to 12.5		
(7913358-1-2)			At DC	± 0.04	
			DC to 5	± 0.3	
			5 to 12.5	± 0.4	
0880-3110	See General Radi	o 0880-3100			
(7913358-2-2)		[1		
1 A-20	Weinschel	20	DC to 12.4	±0.5	
1 A-3	Weinschel	3	DC to 12.4	±0.3	
1 A-6	Weinschel	6	DC to 12.4	± 0.3	
1	Weinschel	See 1-10, 1-20, 1-3	3,1-30, and 1-6		
1-10N	Weinschel	10	DC to 12.4	± 0.5	
(7911956)					
1-10	Weinschel	10	DC to 12.4	± 0.5	
1-20N	Weinschel	20	DC to 12.4	± 0.5	
1-20	Weinschel	20	DC to 12.4	± 0.5	
1-3N	Weinschel	3	DC to 12.4	±0.3	
1-3	Weinschel	3	DC to 12.4	±0.3	
1-30	Weinschel	30	DC to 12.4	±0.75	
1-6N	Weinschel	6	DC to 12.4	±0.3	
1-6	Weinschel	6	DC to 12.4	±0.3	
1/432A	Kay Elemetrics	0 to 22.1	DC to 0.250		<u><</u> 0.1
		A +	DC to 0.1	150/	
		AL 99.1	DC = 10 0.1	±3% +10%	
11004	DDD Electronica	22.1	0.1 to 0.200	±10%	l
1100A	PRD Electronics	ა 10	$\begin{array}{ccc} 0 & to & 4.0 \\ 0 & to & 4.0 \end{array}$	±1.0	
(8520721)	FRD Electronics	10	0 10 4.0	±1.0	
11708	Howlott	30		+0.05	
11700A	Packard	30		-0.03	

APPENDIX A

APPENDIX A

TEST INSTRU	MENT IDENTI	FICATION

		Nominal			Insertion	
		attenuation	Frequency range	Accuracy	loss at 0	
Model number	Manufacturer	(dB)	(GHz) ¹	(dB)	dB (dB)	
118A4	Narda	See 777C-3, 777C-6, 777C-10, and 777C-20				
119A4	Narda	See 757C-3, 757C	2-6, 757C-10, and 757C-2	20		
130C	PRD Electronics	10	7.05 to 10	±1.2		
130D	PRD Electronics	20	2.4 to 10	±1.2 at 4 GHz		
				±2.0 at all other		
				frequencies		
13534006	Weinschel	40	DC to 4	± 0.4		
			4 to 8.5	± 0.75		
190-599	Weinschel	50	DC to 18	±1.0		
2-10DB	Weinschel	10	DC to 18	± 0.5		
2-20DB	Weinschel	20	DC to 18	± 0.5		
2-3DB	Weinschel	3	DC to 18	±0.3		
2-30DB	Weinschel	30	DC to 18	±1.0		
2-6DB	Weinschel	6	DC to 18	±0.3		
20-0	Kay Elemetrics	0 to 41	DC to 0.5			
	5		DC to 0.25	± 0.5	< 0.1	
			0.25 to 0.5	±1.2	<u><</u> 0.2	
210-10	Weinschel	10	1 to 12.4			
			4	±0.17		
			1	-1.18		
			10	$\pm 0.5^{8}$		
210-20	Weinschel	20	2 to 12.4			
			4	$\pm 0.2^{7}$		
			2	-1.38		
			10	+1.08		
210-3	Weinschel	3	0.6 to 12.4			
			4	±0.17		
			1	-0.28		
			10	+0.28		
210-6	Weinschel	6	1 to 12.4			
			4	±0.17		
			1	-0.58		
			10	+0.38		
212-1	Weinschel	1	0.4 to 12.4			
			4	±0.17		
			1	-0.28		
			10	+0.28		
212-2	Weinschel	2	0.5 to 12.4			
			4	$\pm 0.1^{7}$		
				-0.28		
010.0	117 + 1 1		10	+0.28		
212-3	Weinschel	3	0.6 to 12.4	10.17		
			4	±0.1 ′		
				-U.Z°		
1	1	1	10	+0.2°		

APPENDIX A

	1				
		Nominal			Insertion
		attenuation	Frequency range	Accuracy	loss at 0
Model number	Manufacturer	(dB)	(GHz) ¹	(dB)	dB (dB)
212-4	Weinschel	4	1 to 12.4		
			4	±0.17	
			1	-0.38	
			10	$+0.3^{8}$	
212-5	Weinschel	5	1 to 12.4		
~~~~		0	4	$+0.1^{7}$	
			1	-0.48	
			10	-0.4 +0.38	
919.6	Weinschol	G	1 to 19.4	+0.5*	
212-0	weinschei	0	1 10 12.4	10.17	
			4	±0.1 '	
			1	-0.5°	
			10	+0.3*	
212-7	Weinschel	7	1 to 12.4		
			4	$\pm 0.1^{7}$	
			1	-0.68	
			10	$+0.4^{8}$	
212-8	Weinschel	8	1 to 12.4		
			4	±0.17	
			1	-0.88	
			10	$+0.5^{8}$	
212-9	Weinschel	9	1 to 12.4		
~1~ 0	Weinberier	Ū	4	+0.17	
			1	_1.08	
			10	-1.0	
919 10	Wainaahal	10	1 to 19.4	+0.17	
212-10	weinschei	10	1 10 12.4	±0.1 '	
			4	-1.10	
			1	+0.5*	
			10		
212-20	Weinschel	20	2 to 12.4		
			4	$\pm 0.2^{7}$	
			2	-1.38	
			10	+1.08	
2701	Tektronix	0 to 79	DC to 1		<u>&lt;</u> -(0.5
					+ 0.14
					dB/100
					MHz)
		Units error		+0.1 to -0.5	,
		Max error		+0.1 to -0.7	
		1	0.01 to 1	$\pm 0.31$ 0.71	
		0	0.0110 1	+0.31 -0.71	
		<u> </u>		+032 -0.72	
		4		+033 -1.02	
		8		+0.36 -1.34	
		10		$\pm 0.58$	
		20		$\pm 0.66$	
		30		$\pm 0.74$	
		40		±0.92	
		10		~	

TEST INSTRUMENT IDENTIFICATION

## **APPENDIX A**

A-7

## **APPENDIX A**

## TEST INSTRUMENT IDENTIFICATION

		Nominal			Insertion
		attenuation	Frequency range	Accuracy	loss at 0 dB
Model number	Manufacturer	(dB)	(GHz) ¹	(dB)	(dB)
2936 (7913175)	Narda	5 to 90	.950 to 1.25	9	
		5 to 20		±0.5	
		20 to 40		±0.3	
		40 to 70		$\pm 0.5$	
		70 to 90		±0.75	
30-0	Kay Elemetrics	0 to $101^3$	DC to 0.5		
			DC to 0.25	±1.0	<u>&lt;</u> 0.1
			0.25 to 0.5	$\pm 2.0$	<u>&lt;</u> 0.2
31-0	Kay Elemetrics	(70 $\Omega$ ) See Kay E	lemetrics 30-0	T	1
32-0	Kay Elemetrics	(70W) See Kay			
		Elemetrics 30-0			
3282-6173-10	Omni Spectra	10	Dc to 4	±0.3	
33321A	Hewlett-	0 to 70	DC to 4	±1.7% of	≤0.4 dB
	Packard			setting or $\pm 0.4$	+0.07
				dB whichever	dB/GHz
				is greater	
33322A	Hewlett-	0 to 110 ³	DC to 4	±1.7% of	<u>≤</u> 0.6 dB
	Packard			setting or	+0.09
				whichever is	dB/GHz
0544	IIltt	0 to 00	DC +- 10.4	greater	.1.7
334A	Hewlett-	0 10 60	DC 10 12.4	エム	<u>&lt;1.5</u>
255 4	Fackaru Howlott	0 to 12	DC to 0.5		
333A	Packard	0 10 12	$\Delta t$ DC		
	1 ackaru		$\Delta t$ 0.06		0
			At 0.25		<0.4
			At 0.5		<1.0
			At 1 kHz	±0.1	<1.5
			DC to 0.5	$\pm 0.25$	_
355B	Hewlett-	0 to 120 ³	DC to 0.5		
	Packard		At DC		
			At 0.06		<u>&lt;</u> 0.4
			At 0.25		<u>&lt;</u> 1.0
			At 0.5		<u>&lt;</u> 1.5
			At 1 kHz	$\pm 0.3$	
			DC to 0.5		
		0 to 60	DC to 025	±1.0	
		0 to 120 ³	DC to 0.5	±2.0	
355C ²	Hewlett-	0 to 12	DC to 1		<u>≤</u> 0.11 dB
	Packard		A		+1.39
			At lkHz	±0.1	dB/GHz
			DC to 0.5	±0.25	
95502	I I and a total	0 + 00		±0.35	.0.11 JD
399D <u>~</u>	Hewlett-	0 10 90	< IGHZ	±1.5	<0.11 dB
	rackaru				+1.59 dB/CU2
1	1				uD/GFIZ

## **APPENDIX A**

		90	to	120 ³	< 1GHz	±3.0	
See footnotes at end							

## **APPENDIX A**

	1201				т
		Nominal	-		Insertion
		attenuation	Frequency range	Accuracy	loss at 0
Model number	Manufacturer	(dB)	(GHz) ¹	(dB)	dB (dB)
3750A	Hewlett-	0 to 99	DC to 0.4		
	Packard (75 $\Omega$ )		At 0.01		<u>&lt;</u> 0.1
			At 0.5		<u>&lt;</u> 0.04
			At 0.1		<u>&lt;</u> 0.6
		Units	DC to 0.1	±0.1	
		Tens		$\pm 0.2$	
	Cumulative	0 to 79		$\pm 0.5^{5}$	
		0 to 89		±1.0	
		0 to 99		$\pm 2.0$	
		Units	0.1 to 0.2	±0.2	
		Tens		±1.0	
	Cumulative	0 to 89		+2.0	
	oundurio	Units	0.2 to $0.4$	+0.2	
		Tens	0.2 10 0.1	+1.0	
	Cumulative	0 to 79		+2.0	
4108-3DB	ITT Flectronics	3	DC to 8	+0.5	
1100 0DD	ITT Electronics	6	DC to 8	+0.5	
4100-0DD 4100-0DD	ITT Electronics	10	DC to 8	±0.5	
4108-10DD	ITT Electronics	10	DC to 8	±0.5	
4108-20DB	III Electronics	20	DC to 8	±0.5	
432D	Kay Elemetrics	0 to 1013	DC to I	10.05	0.1
			DC to 0.25	±0.65	<0.1
			0.25 to 0.5	±1.2	<0.2
			0.5 to 1	±2.0	<0.4
44-6	Weinschel	6	DC to 18	$\pm 0.3$	
44-60	Weinschel	60	DC to 18	$\pm 1.5$	
442D	Kay Elemetrics ³	0 to 101 ³	DC to 1		
	(75Ω)		DC to 0.25	±1.0	< 0.1
			0.25 to 0.5	$\pm 1.2$	< 0.2
			0.5 to 1	$\pm 2.0$	< 0.4
464A (MIS-	Kay Elemetrics	See RLC Electron	ics A2648B		
10263)					
467A	Kay Elemetrics	0 to 12	DC to 1.5		<u>&lt;</u> 0.05
	, i i i i i i i i i i i i i i i i i i i				dB/100
			DC to 1	$\pm 0.3$	MHz
			1 to 1.5	$\pm 0.5$	
50-1	Weinschel	1	DC to 3.0	±0.2	
50-10	Weinschel	10	DC to 3.0	±0.2	
50-2	Weinschel	2	DC to 3.0	+0.2	
50-20	Weinschel	20	DC to 3.0	+0.2	
50-3	Weinschel	3	DC to 3.0	+0.2	
50-6	Weinschel	6	DC to $3.0$	+0.2	
000	WULLISUIGI	U		±0.2	

TEST INSTRUMENT IDENTIFICATION

## **APPENDIX A**

	11		пранни тенниен		
		Nominal			Insertion
		attenuation	Frequency range	Accuracy	loss at 0 dB
Model number	Manufacturer	(dB)	(GHz) ¹	(dB)	(dB)
50CV120-726	Alan Inc	0 to $120^3$	DC to 1	+0.5  or  +1%	
500 120 720	7 Hall Inc	0 10 120		whichever is greater	
				whichever is greater	
			DC to 0.1		.0.9
					<u>&lt;</u> 0.2
			0.1 to 0.5		<u>&lt;</u> 0.75
			0.5 to 1		<u>&lt;</u> 1.5
50MP30-864	Alan Inc	30	DC to 18	$\pm 1.0$	
(7916821-5)					
50TA101-377	Alan Inc	Limited	DC to 1		
			At 0.5		$\pm 1.0$
		1 to 10	DC to 1	$\pm 0.25$	
		At 20		+2.0	
512	Waveline	0 to $40$	7.05 to 10	+0.25	<0.5
5201 10	Wavenne	10	1.00 to 10	10.2	<u>&lt;</u> 0.5
J30A-10	weinschei	10	1 10 12.4	10.17	
			4	±0.1 '	
			1	-0.8°	
			10	+0.4 -0.18	
530A-20	Weinschel	20	2 to 12.4		
			4	$\pm 0.27$	
			1	-0.97	
			10	$+0.4 - 0.1^{8}$	
530A-3	Weinschel	3	0.6 to 10		
			4	±0.17	
			1	-0.28	
			10	$+0.2 - 0.1^{8}$	
5304-6	Weinschel	6	1 to 10		
550/1 0	weinsener	Ū	1 10 10	+0.17	
			1	0.48	
			10	-0.4-	
500.0	XX7 + 1 1	0	10	+0.2 -0.1°	
530-3	weinschei	3	0.6 to 12.4	10.47	
			4	±0.17	
			1	-0.28	
			10	+0.2 -0.18	
530-7	Weinschel	7	1 to 12.4		
			4	$\pm 0.1^{7}$	
			1	-0.68	
			10	+0.3 -0.18	
60562	Waveline	0 to 60	8.2 to 12.4		1 dB
					maximum
					0.5 dB
					typical
		0 to 50		+2% of setting or	- j picui
		0 10 30		1 dB which over is	
				of up will liever is	
		<u> </u>		greater	
		50 to 60		KEF only	

TEST INSTRUMENT IDENTIFICATION

See footnotes at end of table.

A-10 CHANGE 1 PIN: 050521-001

## **APPENDIX A**

		Nominal			Insertion
		attenuation	Frequency range	Accuracy	loss at 0 dB
Model number	Manufacturer	(dB)	(GHz) ¹	(dB)	(dB)
611	Waveline	0 to 30	8.2 to 12.4	±0.5	<u>&lt;</u> 0.5
612DR	Telonic	0 to 40	8.2 to 12.4	±0.5	<u>&lt;</u> 0.5
702	Narda	0 to 90	DC to 12.4		
		0		$\pm 0.4$	
		10		±0.5	
		20		±0.7	
		30		±0.9	
		40		±1.0	
		50		±1.2	
		60		±1.3	
		70		±1.5	
		80		±1.5	
		90		±1.5	
711	Waveline	0 to 30	12.4 to 18	±0.5	<u>&lt;</u> 0.5
749B	Narda	0 to 40	12.4 to 18	±0.3	< 0.5
757-10	Narda	10	1 to 12.4	±0.17	_
			At 1	+0 -1.1	
			At 2	+0 -0.7	
			At 3	±1.0	
			At 7	+0.6 -0.1	
			At 12.4	+1.3 -0	
757-20	Narda	20	2 to 12.4	±0.27	
			At 2	+0 -1.2	
			At 3	±0.2	
			At 7	+1.3 -0.2	
			At 12.4	+1.9 -0	
757-3	Narda	3	.6 to 12.4	±0.17	
			At 1	+0 -0.3	
			At 2	+0 -0.2	
			At 3	1.0	
			At 7	+0.2 -0.1	
			At 12.4	+0.5 -0	
757-6	Narda	6	1 to 12.4	±0.17	
			At 1	+0 -0.6	
			At 2	+0 -0.5	
			At 3	±0.1	
			At 7	+0.4 -0.1	
arap o			At 12.4	+0.7 -0	
757B-6	Narda	6	DC to 12.4	100	
				±0.3	
				±0.5	
			6 to 12.4	±1.0	

## **APPENDIX A**

		Nominal			Insertion
		attenuation	Frequency range	Accuracy	loss at 0 dB
Model number	Manufacturer	(dB)	(GHz) ¹	(dB)	(dB)
757C10	Narda	10	DC to 12.4		
			DC to 6	±0.3	
			6 to 12.4	$\pm 0.5$	
757C20	Narda	20	DC to 12.4		
			DC to 6	$\pm 0.3$	
			6 to 12.4	$\pm 0.5$	
757C3	Narda	3	DC to 12.4	±0.3	
757C40	Narda	40	DC to 12.4		
			DC to 6	$\pm 1.0$	
			6 to 12.4	$\pm 1.25$	
757C6	Narda	6	DC to	±0.3	
		-	12.4		
765-10	Narda	10	DC to 5		
			DC to 3	$\pm 0.30$	
			3 to 5	$\pm 0.50$	
765-20	Narda	20	DC to 5		
			DC to 3	$\pm 0.30$	
			3 to 5	$\pm 0.50$	
766-10	Narda	10	DC to 4		
			DC to 3	$\pm 0.25$	
			3 to 4	$\pm 0.50$	
766-20	Narda	20	DC to 4		
			DC to 3	$\pm 0.25$	
			3 to 4	$\pm 0.50$	
766-3	Narda	3	DC to 4		
			DC to 3	$\pm 0.25$	
			3 to 4	$\pm 0.50$	
768-10	Narda	10	DC to 11		
			DC to 3	$\pm 0.25$	
			3 to 6	$\pm 0.50$	
			6 to 11	$\pm 0.75$	
768-20	Narda	20	DC to 11		
			DC to 3	$\pm 0.25$	
			3 to 6	$\pm 0.50$	
			6 to 11	$\pm 0.75$	
768-3	Narda	3	DC to 11		
			DC to 3	$\pm 0.25$	
			3 to 6	$\pm 0.50$	
			6 to 11	$\pm 0.75$	
768-30	Narda	30	DC to 11	_	
			DC to 3	$\pm 0.25$	
			3 to 6	$\pm 0.50$	
			6 to 11	$\pm 0.75$	
769-30	Narda	30	DC to 6		
			DC to 2	±0.4	
			2 to 6	$\pm 0.75$	

TEST INSTRUMENT IDENTIFICATION	TEST	'INSTR	UMENT	IDEN]	<b>FIFICA</b>	TION
--------------------------------	------	--------	-------	-------	---------------	------

## **APPENDIX A**

TEST INSTRUMENT IDENTIFICATION

		Nominal			Insertion
		attenuation	Frequency range	Accuracy	loss at 0 dB
Model number	Manufacturer	(dB)	(GHz) ¹	(dB)	(dB)
773-20	Narda	20	DC to 6		
			DC to 2	$\pm 0.3$	
			2 to 6	$\pm 0.5$	
773-3	Narda	3	DC to 6		
			DC to 3	$\pm 0.3$	
			3 to 6	$\pm 0.5$	
773-6	Narda	6	DC to 6		
			DC to 2	$\pm 0.3$	
			2 to 6	$\pm 0.5$	
777-40	Narda	40	DC to 12.4		
			DC to 3	$\pm 0.40$	
			3 to 10	$\pm 0.75$	
			10 to 12.4	$\pm 0.75$	
777C10	Narda	10	DC to 12.4		
			DC to 6	$\pm 0.2$	
			6 to 12.4	$\pm 0.4$	
777C20	Narda	20	DC to 12.4		
			DC to 6	$\pm 0.2$	
			6 to 12.4	$\pm 0.3$	
777C3	Narda	3	DC to 12.4	$\pm 0.2$	
777C6	Narda	6	DC to 12.4		
			DC to 6	$\pm 0.2$	
			6 to 12.4	$\pm 0.3$	
779-20	Narda	20	DC to 18		
			DC to 12.4	$\pm 0.5$	
			12.4 to 18	±0.7	
779-3	Narda	3	DC to 18	$\pm 0.3$	
779-6	Narda	6	DC to 18	$\pm 0.3$	
7909033	See Hewlett-Pack	ard X382A			
7911956	See Weinschel 1-1	10N			
7913121-3		20	DC to 12.4	$\pm 5\%$	
7913122-1-4	See Microlab X17	5A20dB			
7913122-2-4	See Microlab Y17	5A20dB			
7913175	See Narda 2936				
7913358-1-2	See General Radi	o 0880-3100			
7913358-2-2	See General Radi	o 0880-3110			
7916821-1		3	DC to 18	$\pm 0.3$	
7916821-2		6	DC to 18	$\pm 0.3$	
7916821-3		10	DC to 18	$\pm 0.5$	
7916821-4		20	DC to 18	±0.5	
7916821-5		30	DC to 18	±1.0	
7916821-6		40	DC to 18	±1.0	
7916821-7		50	DC to 18	±1.25	

## **APPENDIX A**

	11				
		Nominal			Insertion
		attenuation	Frequency range	Accuracy	loss at 0 dB
Model number	Manufacturer	(dB)	(GHz) ¹	(dB)	(dB)
7916821-8		60	DC to 18	$\pm 1.5$	
794FM	Narda	0 to 40	6 to 10	$\pm 1.5$	<u>&lt;</u> 1.5
8144A-102	Telonic	See MIS-38936			
8322	Bird Electronics		DC to 0.5	$\pm 0.5$	
8323	Bird Electronics	30	DC to 0.5	$\pm 0.5$	
8325	Bird Electronics	30	DC to 0.5	$\pm 0.5$	
8329	Bird Electronics	30	DC to 0.5	$\pm 0.5$	
839	Kay Electronics	0 to 101 ³	DC to 3		
		1.0 to 20 dB	DC to .25	$\pm 0.1$	<u>&lt;</u> 0.2
		steps			
		1.0 to 20 dB	DC to .25	$\pm 0.1$	<u>&lt;</u> 0.2
		steps			
		1.0 to 10 dB	.25 to 1	$\pm 0.2$	<u>&lt;</u> 0.4
		steps			
		20 dB steps	.25 to 1	±0.3	
		1.0 to 10 dB	1 to 2	$\pm 0.3$	<u>&lt;</u> 0.7
		steps			
		20 dB steps	1 to 2	$\pm 0.5$	
		1.0 to 10 dB	2 to 3	$\pm 0.6$	<u>&lt;</u> 1.0
		steps			
		20 dB steps	2 to 3	$\pm 0.8$	
8491B10	Hewlett-	10	DC to 18	$\pm 0.6$	
	Packard				
8491B20	Hewlett-	20	DC to 18		
	Packard		DC to 12.4	$\pm 0.6$	
			12.4 to 18	$\pm 1.0$	
8492B3	Hewlett-	3	DC to 18		
	Packard		DC to 12.4	±0.3	
0.401 D00	TT 1	20	12.4 to 18	±0.4	
8491B30	Hewlett-	30	DC to 18	$\pm 1.0$	
0401D0		0	DC to 10		
8491B6	Hewlett-	6	DC to 18 $DC$ to 19.4	10.4	
	Раскаго		DC = 10 = 12.4	±0.4 ±0.5	
<u> 94094009</u>	2		$12.4 \ 10 \ 10$	10.5	
0492A003	3		DC to $124$	+0.3	
			12.4 12.4	$\pm 0.3$	
84924006	Howlett-	6	DC to 18	10.4	
0106/1000	Packard		DC to $124$	+0.4	
	i uchuru		12.4 to 18	$\pm 0.5$	
8492A010	Hewlett-	10	DC to 18	+0.6	
	Packard			_0.0	

## TEST INSTRUMENT IDENTIFICATION

## **APPENDIX A**

TEST INSTRUMENT I	DENTIFICATION

		Nominal			Insertion
		attenuation	Frequency range	Accuracy	loss at 0 dB
Model number	Manufacturer	(dB)	(GHz) ¹	(dB)	(dB)
8492A020	Hewlett-	20	DC to 18		
	Packard		DC to 12.4	$\pm 0.6$	
			12.4 to 18	$\pm 1.0$	
8494A-OPT002	Hewlett-	0 to 11	DC to 4.0		
	Packard				
		1		$\pm 0.2$	<0.6 dB +
					0.09
					dB/ GHz
		2		±0.2	
		3		±0.3	
		4		±0.3	
		5		±0.3	
		6		±0.3	
		7		$\pm 0.4$	
		8		$\pm 0.4$	
		9		$\pm 0.4$	
		10		$\pm 0.4$	
		11		$\pm 0.5$	
8494B	Hewlett-	0 to 11	DC to 18		<0.6 dB +
	Packard				0.09
					dB/GHz
		1	DC to 12.4	$\pm 0.3$	
			12.4 to 18	±0.7	
		2	DC to 12.4	$\pm 0.3$	
			12.4 to 18	$\pm 0.7$	
		3	DC to 12.4	$\pm 0.4$	
			12.4 to 18	±0.7	
		4	DC to 12.4	$\pm 0.4$	
			12.4 to 18	±0.7	
		5	DC to 12.4	$\pm 0.5$	
			12.4 to 18	±0.7	
		6	DC to 12.4	±0.5	
		~	12.4 to 18	±0.8	
		7	DC to 12.4	±0.6	
			12.4 to 18	±0.8	
		8	DC to 12.4	±0.6	
			12.4 to 18	±0.8	
		9	DC to 12.4	±0.6	
		10	12.4 to 18	±0.8	
		10	DC to 12.4	±0.6	
		11	12.4  10  18	±0.9	
		11	DC = t0 = 12.4	±0.7	
			12.4 to 18	±0.9	

## **APPENDIX A**

		Nominal			Insertion
		attenuation	Frequency range	Accuracy	loss at 0 dB
Model number	Manufacturer	(dB)	(GHz) ¹	(dB)	(dB)
8494B001	Hewlett-	See 8494B			
	Packard				
8495B001	Hewlett-	0 to 70	DC to 12.4	±3% of setting	±0.4 dB
	Packard		12.4 to 18	±4% of setting	+0.07
					dB/GHz
8495D	Hewlett-	0 to 70	DC to 26.5		±0.5 dB
	Packard				+0.13
			DC to 12.4	±3% of setting	dB/GHz
			12.4 to 18	±4% of setting	
			18 to 26.5	±7% of setting	
8496A001	Hewlett-	0 to 110 ³	DC to 4	$\pm 1.7\%$ of setting or	±0.6 dB
	Packard			$\pm 0.4 \text{ dB}$	+0.9
				whichever is greater	dB/GHz
8496B	Hewlett-	0 to 110 ³	DC to 18		±0.6 dB
	Packard				+0.9
			DC to 12.4	±3% of setting	dB/GHz
			12.4 to 18	±4% of setting	
8420731	See PRD Electron	nics 1100C			
9918-3 ²	Weinschel	3	DC to 18	$\pm 0.3$	
9918-6 ²	Weinschel	6	DC to 18	±0.3	
9918-10 ²	Weinschel	10	DC to 18	$\pm 0.5$	
9918-20 ²	Weinschel	20	DC to 18	$\pm 0.5$	
9918-30 ²	Weinschel	30	DC to 18	±1.0	
9918-60 ²	Weinschel	60	DC to 18	±1.5	

#### TEST INSTRUMENT IDENTIFICATION

 $^1\!Not$  calibrated below 10 MHz using this TB.

²Prepare test report for this item using receiver system indications for system codes: U04, U06, U10, U11, Ul2, and F00 ³Not checked below -100 dB.

 4 Accuracy of receiver system (Weinschel, Model VM4) must be considered as well as losses associated with any adapter used.

⁵Some attenuation settings ( $\geq$ 30 dB) will result in accuracy ratios between standard and TI to be < <4:1.

 $^6\text{The}$  frequency of this item is Code A  $\pm 124$  MHz. The actual frequency is classified.

⁷From value on body or shown on correctional chart.

⁸Deviation from value measured at 4 GHz.

 9 Provide calibration chart at 1 GHz giving attenuation every 1 dB up to 20 dB and every 5 dB from 20 to 70 dB. Accuracy of calibration chart will not be less than  $\pm 0.05$  dB/10 dB.

#### NOTE

Software package USATA 001-PDMAT (V) can be used in place of steps 1a(1) through 1a(31) below, verifying that the TI meets or exceeds accuracies listed in appendix A. Copies of the software package are available from Commander, U. S. Army Aviation and Missile Command, ATTN: AMSAM-TMD-LW, Redstone Arsenal, AL 35898-5000.

## 1. Alternate Fixed Attenuation Measurement (10 MHz to 18 GHz)

## a. Performance Check

#### NOTE

When performing the following steps, if TI frequency range extends above and below 2 GHz, it will be necessary to perform two separate tests - one below and one above 2 GHz.



 1For  frequencies below 50 MHz, use power sensor 8482A and a 10 dB attenuator. For frequencies above 50 MHz, use power sensor 8485D and a 30 dB attenuator.

## Figure 4. Alternate attenuation measurement (10 MHz to 18 GHz equipment setup.

(1) Zero and calibrate power meter and measuring receiver RF POWER, then connect equipment as shown in figure 4.

(2) Record the 10 test frequencies selected in paragraph **7a** in to the test frequencies column of table B1.

(3) Adjust signal generator No. 1 (No. 2) frequency controls to test frequency recorded in table B1 and adjust signal generator No. 1 (No. 2) RF output controls for +6 dBm.

## NOTE

Use adapters as needed.

## NOTE

Use waveguide to coaxial adapters when TI is waveguide.

#### NOTE

Use 50 to 75 or 50 to 93 adapters when TI is 75 or 93 .

(4) Press **4.0 SPCL** keys and, if the **AUTO TUNING** indicator light is off, press the measuring receiver **FREQ** and **BLUE** (**SHIFT**) **AUTO TUNING** keys.

## NOTE

For frequencies below 2 GHz proceed to step (8).

#### NOTE

For frequencies 2 GHz and above, proceed to step (6) below. For frequencies from 1.3 to 2 GHz the offset frequency should be 620.53 MHz above that of signal generator No. 2. For frequencies above 2 GHZ the offset frequency should be 120.53 MHz above that of signal generator No. 2.

(5) Enter the test frequency into the measuring receiver and press the **MHz** key.

(6) Calculate and record the proper offset frequency and record it as the 'Offset Frequency' in table B1 alongside the appropriate test frequency. Set signal generator No. 3 to produce a +8 dB output at offset frequency.

Table B1								
_		Power				First	Second	Set
Test	Offset	meter	Init dB	First cal	Second	RF cal fac	RF cal fac	ref cal fac
frequency	frequency	reading	reading	point	cal point	(%)	(%)	(%)

(7) Press measuring receiver **27.3 SPCL** keys, enter the offset frequency from table B1, and press the **MHz** key.

(8) Press the **GOLD** (S) **TUNED RF LEVEL**, **39.9**, **SPCL**, **3.7 SPCL**, and **1.9 SPCL** keys then press the **LOG/LIN** key for dBm units.

(9) Note the power meter reading and record it as 'Power Meter Reading' in table B1 alongside the appropriate test frequency.

(10) Note the measuring receiver reading and record it as 'Init dB' reading in table B1 alongside the appropriate test frequency.

(11) Press the TI **BLUE** (SHIFT) key, then the SET REF (ZERO) key.

(12) Calculate the first cal point using the formula -40 + signal generator No.1 (No.2) output level - Init dB reading. (Example -40 dBm + (6 dBm) - (-1 dBm) = -33 dBm). Record this value, as 'First Cal Point' in table B1 alongside the appropriate test frequency.

(13) Set signal generator No. 1 (No.2) to the level calculated in (12) above and press the **CALIBRATE** key.

(14) Calculate the second cal point using the formula -80 + signal generator No. 1(No. 2) output level -40 dBm to result of step (12). (Example -80 dBm + (6 dBm) - (-1 dBm) = -73 dBm). Record this value, as 'Second Cal Point' in table B1 alongside the appropriate test frequency.

(15) Set signal generator No. 1 (No. 2) to the level calculated in (14) above and press the **CALIBRATE** key.

(16) Set signal generator No. 1 (No. 2) to the initial level of +6 dBm.

(17) Press **38.2** and **SPCL** keys and record the displayed value as 'First RF CAL FAC' in table B1 alongside the appropriate test frequency.

(18) Press **38.3** and **SPCL** keys and record the displayed value as 'Second RF CAL FAC' in table B1 alongside the appropriate test frequency.

(19) Press **38.4** and **SPCL** keys and record the displayed value as 'Set Ref CAL FAC' in table B1 alongside the appropriate test frequency.

(20) Repeat steps (3) through (19) for each of the test frequencies in table B1.

(21) Press the **FREQ** and **BLUE** (**SHIFT**) **AUTO TUNING** keys.

(22) Set signal generator No. 1 (No. 2) to appropriate test frequency listed in table B1.

(23) Press the GOLD (S) and TUNED RF LEVEL, 26.1 and SPCL keys.

## NOTE

For frequencies below 2 GHz proceed to step (25) below.

(24) Press **27.3 SPCL**, enter the appropriate offset frequency from table B1 and press the **MHz** key. (Ignore the displayed frequency reading.)

(25) Set signal generator No. 3 for an output of +8 dBm and the appropriate offset frequency from table B1.

(26) Connect the attenuator at the INSERTION POINT as shown in figure 4.

(27) Adjust signal generator No. 1 (No. 2) for a power meter indication as recorded in table B1 as 'Power Meter Reading'.

(28) Press **39.2 SPCL** and enter the 'First RF Cal Fac' from table B1 for the appropriate frequency, and press the **BLUE** (**SHIFT**) % **CAL FACTOR B** (**MHz**) keys.

(29) Press **39.3 SPCL** and enter the 'Second RF Cal Fac' from table B1 for the appropriate frequency, and press the **BLUE** (SHIFT) % CAL FACTOR (MHz) keys.

(30) Press **39.4 SPCL**, enter the 'Set Ref Cal Fac' from table B1 for the appropriate frequency, and press the **BLUE** (**SHIFT**) **% CAL FACTOR** (**MHz**) keys.

(31) Measure and record receiver system indication. Measured attenuation will be within range and accuracies specified in appendix A for TI being calibrated.

(32) Repeat (21) through (24) and (26) through (30) above for remaining test frequencies recorded in table B1 above.

**b. Adjustments**. No adjustments can be made; however, a correction chart may be prepared listing actual receiver system indications at frequencies of interest.

#### NOTE

Software package USATA 001-PDMAT (V) can be used in place of steps **1a**(1) through **1a**(35) below, verifying that the TI meets or exceeds accuracies listed in appendix A. Copies of the software package are available from Commander, U. S. Army Aviation and Missile Command, ATTN: AMSAM-TMD-LW, Redstone Arsenal, AL 35898-5000.

## 1. Alternate Variable Attenuation Measurement (10 MHz to 18 GHz).

## a. Performance Check

#### NOTE

When performing the following steps, if TI frequency range extends above and below 2 GHz, it will be necessary to perform two separate tests - one below and one above 2 GHz.

(1) Zero and calibrate power meter and measuring receiver RF POWER, then connect equipment as shown in figure 4.

(2) Record the 10 test frequencies selected in paragraph **7a** in to the test frequencies column of table C1.

(3) Adjust signal generator No. 1 (No. 2) frequency controls to test frequency recorded in table C1 and adjust signal generator No. 1 (No. 2) RF output controls for +6 dBm.

#### NOTE

## Use adapters as needed.

## NOTE

Use waveguide to coaxial adapters when TI is waveguide.

## NOTE

Use 50 $\Omega$  to 75 $\Omega$  or 50 $\Omega$  to 93 $\Omega$  adapters when TI is 75 $\Omega$  or 93 $\Omega$ .

(4) If the **AUTO TUNING** indicator light is off, press the measuring receiver **FREQ** and **BLUE** (**SHIFT**) **AUTO TUNING** keys on the measuring receiver.

## NOTE

For frequencies below 2 GHz proceed to step (8) below.

## NOTE

For frequencies 2 GHz and above proceed to step (6) below. For a frequency of 2 GHz the offset frequency should be 620.53 MHz above that of signal generator No. 2. For frequencies above 2 GHZ the offset frequency should be 120.53 MHz above that of signal generator No. 2.

(5) Calculate and record the proper offset frequency and record it as the 'Offset Frequency' in table C1 alongside the appropriate test frequency. Set signal generator No. 3 to produce a +8 dB output at offset frequency.

Test frequency	Offset frequency	Power meter reading	Init dB feeding	First cal point	Second cal point	First RF cal fac (%)	Second RF cal fac (%)	Set ref cal fac (%)

Table C1

(6) Press measuring receiver **27.3 SPCL** key, enter the offset frequency from table C1, and press the **MHz** key.

(7) Press measuring receiver **RF POWER** key. Verify that the RF power mode has been properly calibrated, press **Log/Lin** key for a dB display, and press TI **RATIO** key.

(8) Set the TI to 0 dB or minimum level and connect to the TI INSERTION POINT (figure 4).

(9) Verify that the measuring receiver indication is within the insertion loss specification for the appropriate TI as listed in appendix A.

(10) Press the **RATIO** key to deactivate, then press the **GOLD** (S) **TUNED RF LEVEL**, **39.9 SPCL**, **3.7 SPCL**, and **1.9 SPCL** keys.

(11) Note the power meter reading and record it as 'Power Meter Reading' in table C1 alongside the appropriate test frequency.

(12) Note the measuring receiver reading and record it as 'Init dB' reading in table C1 alongside the appropriate test frequency.

(13) Press the TI **BLUE** (SHIFT) key and then the SET REF (ZERO) key.

(14) Calculate the first cal point using the formula -40 + signal generator No. 1(No. 2) output level –Init dB reading. (Example -40 dBm + (6 dBm) - (-3 dBm) = -31 dBm). Record this value, as 'First Cal Point' in table C1 alongside the appropriate test frequency.

(15) Set signal generator No. 1 (No. 2) to the level calculated in (14) above and press the **CALIBRATE** key.

(16) Calculate the second cal point using the formula -80 + signal generator No.1 (No.2) output level -40 dBm to result of step (14). (Example -80 dBm + (6 dBm) - (-3 dBm) = -71 dBm). Record this value, as 'Second Cal Point' in table C1 alongside the appropriate test frequency.

(17) Set signal generator No. 1 (No. 2) to the level calculated in (16) above and press the **CALIBRATE** key.

(18) Set signal generator No. 1 (No. 2) to the initial level of +6 dBm.

(19) Press **38.2** and **SPCL** keys and record the displayed value as 'First RF CAL FAC' in table C1 alongside the appropriate test frequency.

(20) Press **38.3** and **SPCL** keys and record the displayed value as 'Second RF CAL FAC' in table C1 alongside the appropriate test frequency.

(21) Press **38.4** and **SPCL** keys and record the displayed value as 'Set Ref CAL FAC' in table C1 alongside the appropriate test frequency.

(22) Remove TI from setup and repeat steps (4) through (21) for each of the test frequencies in table C1.

(23) Press the **FREQ** and **BLUE** (**SHIFT**) **AUTO TUNING** keys.

(24) Set signal generator No. 1 (No. 2) to appropriate test frequency listed in table C1.

## NOTE

For frequencies below 2 GHz proceed to step (27) below.

(25) Press **27.3 SPCL**, enter the appropriate offset frequency from table C1, and press the **MHz** key. (Ignore the displayed frequency reading.)

(26) Set signal generator No. 3 for an output of +8 dBm and the appropriate offset frequency from table C1.

(27) Press the GOLD (S) and TUNED RF LEVEL, 26.1 and SPCL keys.

(28) Adjust signal generator No. 1 (No. 2) for a power meter indication as recorded in table C1 as 'Power Meter Reading.'

(29) Press **39.2 SPCL** and enter the First RF Cal Fac from table C1 for the appropriate frequency, and press the **BLUE** (**SHIFT**) **% CAL FACTOR** (**MHz**) keys.

(30) Press **39.3 SPCL** and enter the Second RF Cal Fac from table C1 for the appropriate frequency, and press the **BLUE** (**SHIFT**) **% CAL FACTOR** (**MHz**) keys.

(31) Press **39.4 SPCL** and enter the Set Ref Cal Fac from table C1 for the appropriate frequency, and press the **BLUE** (**SHIFT**) **% CAL FACTOR** (**MHz**) keys.

(32) Increase TI attenuation setting in one step increments (or one cardinal point as desired.)

(33) Measure and record receiver system indication. Measured attenuation will be within range and accuracies specified in appendix A for TI being calibrated.

(34) Repeat (32) and (33) above for remaining TI step increments.

(35) Repeat (23) through (34) above for remaining test frequencies recorded in table C1 above.

**b. Adjustments**. No adjustments can be made; however, a correction chart may be prepared listing actual receiver system indications at frequencies of interest.

By Order of the Secretary of the Army:

ERIC K. SHINSEKI General, United States Army Chief of Staff

**OFFICIAL:** 

Jul B. Huh

JOEL B. HUDSON Administrative Assistant to the Secretary of the Army 0020609

Distribution:

To be distributed in accordance with IDN 342070, requirements for calibration procedure TB 9-4931-523-35.